Action Potential in the Transverse Tubules and Its Role in the Activation of Skeletal Muscle
نویسندگان
چکیده
The double sucrose-gap method was applied to single muscle fibers of Xenopus. From the "artificial node" of the fiber, action potentials were recorded under current-clamping condition together with twitches of the node. The action potentials were stored on magnetic tape. The node was then made inexcitable by tetrodotoxin or by a sodium-free solution, and the wave form of the action potential stored on magnetic tape was imposed on the node under voltage-clamp condition (simulated AP). The twitch height caused by the simulated AP's was always smaller than the twitch height produced by the real action potentials, the ratio being about 0.3 at room temperature. The results strongly suggest that the transverse tubular system is excitable and is necessary for the full activation of twitch, and that the action potential of the tubules contributes to about 70 % of the total mechanical output of the normal isotonic twitch at 20 degrees C. Similar results were obtained in the case of tetanic contraction. At a temperature near 10 degrees C, twitches produced by the simulated AP were not very different (85 % of control amplitude) from the twitches caused by real action potentials. This indicates that the excitability of the tubules becomes less necessary for the full activation of twitch as the temperature becomes lower.
منابع مشابه
A new reduced mathematical model to simulate the action potential in end plate of skeletal muscle fibers
Usually mathematicians use Hodgkin-Huxley model or FitzHug-Nagumo model to simulate action potentials of skeletal muscle fibers. These models are electrically excitable, but skeletal muscle fibers are stimulated chemically. To investigate skeletal muscle fibers we use a model with six ordinary differential equations. This dynamical system is sensitive to initial value of some variables so it is...
متن کاملEffects of ionic parameters on behavior of a skeletal muscle fiber model
All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...
متن کاملNa,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+
The Na,K-ATPase α2 isoform is the predominant Na,K-ATPase in adult skeletal muscle and the sole Na,K-ATPase in the transverse tubules (T-tubules). In quiescent muscles, the α2 isozyme operates substantially below its maximal transport capacity. Unlike the α1 isoform, the α2 isoform is not required for maintaining resting ion gradients or the resting membrane potential, canonical roles of the Na...
متن کاملاثر L - آرژینین بر انتقال عصبی - عضلانی عضله دوبطنی گردنی جوجه
Background and Purpose: NO is a short-lived gas molecule generated by degradation of L-arg to citrulline and by the activation of enzyme NOS Ca2+/calmodulin-dependent. There are multiple NOS isoforms that strongly are expressed in skeletal muscle, suggesting the crucial role of NO in regulating muscular metabolism and function. In this study, the effect of L-arginine was examined at the neuromu...
متن کاملbeta-adrenergic receptor and adenylate cyclase in transverse tubules of skeletal muscle.
Experiments were carried out to clarify the sites of action of beta-adrenergic agonists in skeletal muscle microsomes. Microsomes were fractionated into longitudinal reticulum, terminal cisternae, and isolated transverse tubules. Transverse tubules were selectively labeled and tracked with [3H]ouabain. beta-adrenergic receptor was identified by [3H]dihydroalprenolol binding. Assays of beta-adre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 63 شماره
صفحات -
تاریخ انتشار 1974